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An approximate (linearised) Riemann solver is presented for the solution of the Euler 
equations of gas dynamics in one dimension with a general convex equation of state. The 
scheme is applied to a standard shock reflection test problem for some specimen equations of 
state. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The linearised approximate Riemann solver of Roe [ 1 ] was proposed in 1981 for 
the solution of the Euler equations of gas dynamics where the properties of the fluid 
are represented by the ideal equation of state. We seek here to extend this scheme 
to the solution of the Euler equations in one dimension for real gases. At each stage 
we shall as far as possible draw a parallel with Roe’s scheme for the ideal equation 
of state. Results for the extended scheme are presented for a particular problem of 
shock reflection for three different equations of state. 

In Section 2 we look at the Jacobian matrix of the flux function for the Euler 
equations with a general convex equation of state, and in Section 3 derive an 
approximate Riemann solver for the solution of these equations. In Section 4 we 
give some particular examples of nonideal equations of state, and in Section 5 we 
describe a standard test problem involving shock reflection. Finally, in Section 6 we 
display the numerical results achieved for this test problem with three different 
equations of state. 

A construction with similar objectives has been proposed by Roe [2] which, 
however, differs in both procedure and final form. 

* This work forms part of the research programme of the Institute for Computational Fluid Dynamics 
at the Universities of Oxford and Reading and was funded by A.W.R.E., Aldermaston under Contract 
NSN/13B/2A88719. 
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2. EQUATIONS OF FLOW AND STATE 

In this section we state the equations of motion for an inviscid compressible fluid 
in one dimension for any equation of state, and derive the eigenvalues and eigen- 
vectors of the Jacobian of the corresponding flux function. 

2.1. Equations 
The Euler equations governing the flow of an inviscid, compressible fluid in one 

dimension may be written in conservation form as 

wt+F,=O, (2.1) 

where 

together with 

w = (P, pu, e)’ (2.2) 

F(w) = (PU, P + pu2, u(e +p))=, (2.3) 

e = pi + $pu2, (2.4) 

where p = p(x, t), u = u(x, t), p =p(x, t), i = i(x, t), and e = e(x, t) represent the den- 
sity, velocity, pressure, specific internal energy, and the total energy, respectively, at 
a position x and time t. Equations (2.1) represent conservation of mass, momen- 
tum, and energy. In addition, there is an equation of state which is a macroscopic, 
thermodynamic relationship specific to each particular fluid, and we assume here 
that this can be written in the form 

P=P(P, 9 (2.5) 

The function p( ., .) will be assumed to satisfy conditions which ensure that the 
system (2.1) is hyperbolic and the corresponding Riemann problem always 
possesses a unique solution (see [3]). Furthermore, we shall assume that the first 
derivatives ap/L?p Ii and @/&I,, are available. In the case of an ideal gas, Eq. (2.5) 
becomes 

p=(y-l)pi, (2.6) 

where y is the ratio of specific heat capacities of the fluid: this is sometimes called a 
y-gas law. The relationship given in Eq. (2.5) will usually be determined by 
experimental considerations. 

2.2. Jacobian 
We now construct the Jacobian, A, of the flux function, F(w) given by 

A = aFlaw, (2.7) 
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and find its eigenvalues and (right) eigenvectors since this will form the basis for 
our approximate Riemann solver. 

Defining the momentum m as m = pu we may rewrite Eqs. (2.2), (2.3), and (2.5) 
in the form 

w = (P, m, elT (2.8a) 

and 

P =P(P? 93 

where 

1 m2 ice--- 
P 2P2’ 

(2.8b) 

(2.8~) 

(2.8d) 

Now. 

and,iin particular,,we will need to find,(~~/ap)(p,i(p,m,e))l,,,,(ap/am)(p,i(p,m,e))l,,, 
and (Wae)(~, 0, m, e))lp,,. By the chain rule for partial derivatives, however, we 
have 

where 

i=i(p,m,e)=4--1!.?! 
P 2P2’ 

(2.10b) 

(2.1Oc) 

(2.11) 



APPROXIMATE RIEMANN SOLVER FOR REAL GASES 385 

This leads to the following expression for the Jacobian 

A= (2.12) 

where the enthalpy, H, is defined by 

H= 

the “sound speed,” a, is given by 

a*=PPi+p 
P2 p' 

(2.13) 

(2.14) 

and we use the shorthand notation pP z (@/a~)@, i)l i, pi E (@/ai)(p, i)l P. 
The eigenvalues, Ai, and corresponding right eigenvectors, ei, of A are then found 

to be 

A,=u+a, 

A2=u-a, 

and 

23 = u, 

(2.15a) 

(2.15b) 

(2.1%) 

We note that in the case of an ideal gas the equation of state (2.8~) becomes 

p=(y-l)Pi, (2.16) 

giving 

Pi=(Ymll)P, Pp=(Y-W (2.17) 
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and thus 

a’ P+i=H-lu2- ” -=- 
Y-1 P 2 -p(Y- 

(2.18) 

In particular, the eigenvectors e,, e2, e3 become 

(2.19a)-(2.19c) 

In the next section we develop an approximate Riemann solver using the results 
in this section. 

3. AN APPROXIMATE LINEARISED RIEMANN SOLVER 

In this section we develop an approximate Riemann solver for the Euler 
equations in one dimension with a general convex equation of state. We follow a 
similar course of reasoning as that used by Roe and Pike [4] in the ideal gas case 
and begin by giving a brief description of their algorithm. 

3.1. The Approximate (Linearised) Riemann Solver of Roe and Pike for an Ideal Gas 

Given two states wL, wR (left and right) of a gas close to an average state w, seek 
coefficients a,, u2, ci3, such that, if e,, e,, e3 are the eigenvectors of the Jacobian 
matrix for the ideal gas flux function (2.19a)-(2.19c) 

Aw = i ujej (3.1) 
j=l 

to within O(A2), where A( .) = ( .)R - ( .)L. This gives the expressions 

uI=&(Ap+paAu) (3.2a) 

a*=&(Ap-padu) (3.2b) 

AP cr,=Ap---, 
a2 

and it can also be shown that with the same values of cll, d2, a3 

(3.2~) 

AF = i ,ljoljej, 
j=l 

(3.3) 
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where I,, I,, 1, are given by Eqs. (2.15a)-(2.1%). The decomposition (3.1) yields 
exact characteristic fields to O(A2). The approximate Riemann solver is then con- 
structed by seeking averages p, ii, ii such that, for states wL and wR, not necessarily 
close, 

Aw = i ZjCj 
j=l 

and 

AF = 2 xjEjCij 
j=l 

(i.e. (3.1) and (3.3) with averaged values) hold, where now 

x1,2,3=ii+ii, ii-ii, ii 

d,=$(Ap-@Au) (3.8b) 

AP &,=AP-~. 
a 

(3.8~) 

The required averages are found to be 

and 

where 

e3 = 

(3.4) 

(3.5) 

(3.6a)-(3.6c) 

(3.7a)-( 3.7c) 

(3.8a) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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and H= (e +p)/p is the enthalpy. The approximate Riemann solver can then be 
implemented in a finite difference scheme as follows (see [4]). 

Suppose at time level n the approximate solution consists of a set of piecewise 
constants 

i 

WLX E (XL - iAx, XL + iAx) 
w= W,XE(X,-$Ax,x,++Ax), 

(3.13) 

where Ax = xR - xL represents a constant mesh spacing. Thus at either end of the 
cell (xL, xR) the data is wL, wa. The solution w may be updated to time level n + 1 
in an upwind manner as shown schematically in Fig. 1, where At is the time interval 
from level n to level n + 1. This approximate Riemann solver has the important 
shock-capturing property guaranteed by Eqs. (3.4)-( 3.5) (see [ 1 ] ). 

We now use a similar course of reasoning to construct the linearised approximate 
Riemann solver for a general convex equation of state. 

3.2. Wavespeeds for Nearby States 

Consider two states wL, wR (left and right) close to an average state w, and seek 
aI, a29 @3, such that 

Aw = c ajej 
j=l 

(3.14) 

to within O(A2), where A( .) = (.)a - ( .)L (cf. (3.1)). Writing Eq. (3.14) out in full 
we have 

Ap = aI + a2 + a3 

A(pu)=cr,(u+a)+cr,(u-a)+a,u 

(3.15a) 

(3.15b) 

Ae=cc, 

From Eqs. (3.15a)-(3.15b) we have that 

A(pu) - u Ap = a(crl - a2) (3.16) 

and from Eqs. (3.15a) and (3.15c), 

--f~2A~=$(a,+a2)+~a(a,-~2)-~3~. (3.17) 
I 

Using Eq. (3.16) together with CI, + a2= Ap -Q, Eq. (3.17) yields the following 
equation for a3: 

idp-A(pi)+$dp-:Ap-A (3.18) 
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Then, since 

PPi 
pa*=-j-+ppp, (3.19) 

cl3 is given by 

pa’:=iAp-A(pi)+fAp-CAP-A $f +uA(pu). 
( > 

(3.20a) 
I 

The coefficients aI and ~1~ can now be calculated from Eqs. (3.15a) and (3.16), i.e., 

cr,+a,=Ap-a, 

a -a J(P+-AP 
1 2 a ’ 

(3.20b) 

(3.20~) 

We have made the assumption that the left and right states wL, wR are close to 
some average state w to within O(A*), so that, to this approximation 

A(pu)=uAp+pAu 

A(pi)=iAp+pAi 

A(pu*) = u* Ap + 2pu Au. 

(3.21a) 

(3.21b) 

(3.21~) 

In that case Eq. (3.20a) gives 

pa*z=$Ap-p Ai, 
I 

and using Eq. (3.19) we obtain 

c( =Ap-(PpAp+PiAi) 
3 a2 ’ 

But 

AP ‘Pp Ap +Pi Ai 

to within O(A*), and therefore 

AP a,=Ap-7. 
a 

Finally, Eqs. (3.20bb( 3.2Oc) become 

a, + u2 = Apia* 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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and 

a, -a,=p Au/a, 

to give the following expressions for CC,, q, and t13, 

a,=$(Ap+paAu) 

a,=&(Ap--paAu) 

and 

a3 = Ap - Ap/a2. 

We have found ~1r, Q, clg such that 

Aw = i oljej 
j=l 

to within O(A2), and a routine calculation verities that 

(3.27) 

(3.28a) 

(3.28b) 

(3.28~) 

(3.29) 

AF = i ljajej 
j=l 

to within O(A*). We are now in a position to 
Riemann solver. 

3.3. Decomposition for General wL, wR 

(3.30) 

construct the new approximate 

As in Roe and Pike [4], we consider the algebraic problem of finding average 
eigenvalues I,, I,, x3 and corresponding average eigenvectors G, , E2, E3 such that 
the relations (3.29) and (3.30) hold exactly for arbitrary states wr, wR not 
necessarily close. Specifically, we seek averages p, ii, pi, pp, p, and i in terms of two 
adjacent states wL, wR such that 

Aw = i EjEj (3.31) 
j=l 

and 

where 

AF = i ljiijCj, 
j=l 

(3.32) 

A(.)=(.),-(.), 

w = (P, PU, e)' 

(3.33a) 

(3.33b) 
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F(w) = (pu,p + pu2, u(e +p))’ 

e=pi+&u* 

P =I@, i) 

1 lJ3=ii+ii, ii-ii, i i 

AP c&=Ap---, 
ii* 

and ii is given by 

391 

(3.33c) 

(3.33d) 

(3.33e) 

(3.34a) 

(3.34b) 

(3.35a) 

(3.3Sb) 

(3.3%) 

(3.36) 

The problem of finding averages 0, ii, pi, Ijp, p, and i subject to Eqs. (3.31 k(3.36) 
will subsequently be denoted by (*). (N.B. The quantities pi and 8, denote 
approximations to the partial derivatives pi and pP, respectively.) 

The solution of problem (*) will be sought in a way similar to that adopted by 
Roe and Pike [4] in the specialised, ideal gas case (see Section 3.1). We note, 
however, that problem (*) is equivalent to seeking an approximation A” to the 
Jacobian A with eigenvalues xi and eigenvectors Ci, which is an alternative 
approach also used in the ideal gas case by Roe [ 11. 

The first step in the analysis of problem (*) is to write out Eqs. (3.31) and (3.32) 
explicitly, namely, 

Ap=d,+C,+G, (3.37a) 

A(pu) = B,(ii + 5) + B,(ii -ii) + d3i2 (3.37b) 

Ae=A(pi)+A($)=&, ($+i+~i2*+iZ) 

(3.37c) 

A(pu) = B,(ii + ii) + Z2(ii - ii) + &i-i (3.37d) 

A(p + pu’) = Ap + A(pu*) = 6,(f + ii)* + B2(ii - ii)2 + Z,fi* (3.37e) 

W/74/2-9 
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and 
3 A(u(e+p))=A(pui)+A y ( > +A(up)=d,(ii+iq :+7+;fi2+zi (- P i 

(- 
1 

> ( 
-- 

+&,(22-d) P-+7+px 
P 

+&I,ii Y+;d2-* . > (3.37f) 
PI 

Equation (3.37a) is satisfied by any average we care to define, while Eq. (3.37b) is 
the same as Eq. (3.37d). Thus it remains to satisfy Eqs. (3.37c)-(3.37f). From 
Eq. (3.37d) we have 

A(pu) = ii(8, + 4 + 63) + S(E, -a,) 

=iiAp+DAu, (3.38) 

and from Eq. (3.37e) we obtain 

A(pu2) = i2(fil + g2 + ii,) + 2%(6, -5,) 

= ii2 Ap + 2iip Au. (3.39) 

Substituting for /? from Eq. (3.38) into Eq. (3.39) yields the quadratic equation 
for i& 

ii2 Ap - 26 A(pu) + A(pu2) = 0. 

Only one solution of Eq. (3.40) is productive, namely, 

(3.40) 

fi= A(Pu) - &A(Pu))~ - 4 4pu2) 
4 

and a routine calculation yields 

which, on substituting ii into Eq. (3.38), gives 

p= 
A(pu) - ii Ap 

AU =JKZ. 

We have now determined b and tl, and with these we can show that 

-;Ap-3!!$fu= ( Au)~ jz5’ 

2(&+Jh2 

(3.41) 

(3.42) 

(3.43) 

A(up)-fiAp=pAu LJGi (PLIPL) + & (PRJPR)) 

&+\/rd;; ’ 
(3.44) 
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and 

393 

(3.45) 

all of which will be used later. 
We are now left with Eqs. (3.37~) and (3.37f) and begin by rewriting them, using 

Eqs. (3.35)-(3.36), to give 

A(pi) -1 Ap - PAP d, 
,,,+Bq=o 
pa , 

(3.46) 

and 

A(pui)-HAp-/TiAu+A(up)-iidp-jiAu+A -$-a2 Au 

(3.47) 

Now, subtracting Eq. (3.46) multiplied by I from Eq. (3.47) and using 
Eqs. (3.43~(3.45) together with the identity 

A(pui) - cA(pi) = p Au ‘J~‘~‘“‘, 
Pt+ PR 

we obtain, after division by c Au, 

P B+i+iii2= JPL 
( ( 

&+i +lu2 
PL 

L2L 
) ( 

+JpR z+i,+it& 
)I C&+1/;;;;). 

(3.48) 

Therefore, if we define a mean enthalpy, A, by 

we find, from Eq. (3.48), that 

&k~+&&t 

Jz+Jz ' 
(3.50) 

as in the ideal case. We have now specified $, ii, p/j? +i: thus, in order to specify pi, 
p,,, i (and hence p), we focus our attention on Eq. (3.46) which can be written as 

A(pi)-iAp-@Ai+~(~iAi+~,Ap-Ap)=O. (3.51) 
I 
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A number of choices can now be made, but it is clear that the most natural choice 
is to take 

A(pi)-idp-FAi=O, (3.5i) 

i.e., 

,=A(pi)-bAi=&k+&iR 
AP &+& ’ 

in which case (3.51) gives 

(3.53) 

Ap =diAi+Pp Ap (3.54) 

as a necessary condition. Therefore, all we need to do to complete the approximate 
Riemann solver is to choose approximations pi, 8, to pi, pp such that (3.54) holds. 
This is a straightforward matter. 

We propose approximations pi, BP to pi and pp as follows: 

pi= 
4 (; CP(PR, id +ph id1 -i CAh, k.) +Ak, iJ1 > 

i Cpi(pLy i) +Pi(pRT 91 if Ai=O,iL=iR=i 

and 

$ (f CP(P 
I 

Ry iR) +P(PR? &.)I -Tj b(PL? iR) +Ph k)l 

P, = 

i bph k) +pp(p7 iR)l if Ap=O,p,=p,=p. 

if Ai#O 

(3.55a) 
(3.55b) 

if Ap#O 

(3.56a) 
(3.56b) 

It is a simple matter to check that, for each of the combinations arising from the 
approximations given by Eqs. (3.55a)-(3.56b), Eq. (3.54) is satisfied. In particular, if 
the equation of state is separable, i.e., consists of a series of terms of the form 
p = W(p) Z(i) where 9, Z depend on p, i, respectively, then Eqs. (3.55a)-(3.56b) 
become 

and 

if Ai#O 

if Ai=O,i,=i,=i, 

if Ap#O 

if Ap=O,p,=p,=p, 

(3.57a) 

(3.57b) 

(3.58a) 

(3.58b) 
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where d(.)=(.),-(a), as before, and := f[( .)L + ( .)R], the arithmetic mean. 
Although Eqs. (355a)-(3.56b) are not the only choices for pi, BP, these expressions 
represent a natural extension of the approximations given by Eqs. (3.57a)-(3.58b). 
In particular, we note that for any particular equation of state equations 
(3.55a)-(3.56b) can be simplified and the resulting expressions can be incorporated 
into a finite difference code in such a way as to avoid function evaluations. 

Summarising, we can implement the above one-dimensional Riemann solver for 
the Euler equations with a general convex equation of state in a finite difference 
scheme in a similar way to that of Roe and Pike [4] as follows. Suppose at time 
level n we have data wL, wR given at either end of the cell (x,, xR). Then we update 
w to time level n + 1 in an upwind manner (cf. Section 3.1). Schematically, we 
increment w as in Fig. 1, where Ax = xR - xL, At is the time interval from level n to 
n + 1, and 5, Cj, gj are given by 

pi, jjp are given by Eqs. (3.55a)-(3.56b), and A( .) = ( .)R - (.h. In addition, we can 
use the idea of flux limiters [S] to create a second-order algorithm which is 

xj ’ 0 i j c 0 j = 1,2,3 

FIG. 1. Schematic representation of the lint order algorithm. 
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oscillation-free, and we can modify the scheme to disperse entropy violating 
solutions (see [ 6 J ). 

The Riemann solver we have constructed in this section is a conservative 
algorithm and has the important shock-capturing property guaranteed by 
Eqs. (3.31~(3.32) (see Cl]). In the next section we give examples of different 
equations of state. 

4. EQUATIONS OF STATE 

In this section we give three different forms of the equation of state for a fluid. 

(a) Ideal gas equatiolz of state. This can be written in the general form 

p=(y-lIPi, (4.1) 

where y is a constant and represents the ratio of specific heat capacities of the fluid. 
Typical values for y are y = 3 for a monatomic gas, e.g., helium, and y = 1.4 for a 
diatomic gas, e.g., air. 

(b) Stiffened equation of state. This is usually written in the form 

p=B 

where B is a constant, and p,, represents a reference density. This form of the 
equation of state is a simple extension of the ideal gas equation, and as such can be 
used in test problems originally designed for ideal gases. 

(c) General equation of state. A more general equation of state has been 
developed by R. K. Osborne at the Los Alamos Scientific Laboratory [7], and can 
be written in the form 

P= CM~+4l)lM~, +&ICI) 
+ ECh3 + L3h + b,i) + E(Gl + Cl01 >> (4.3) 

where E = pOi, [ = p/p0 - 1 and the constants pO, a,, a2, bO, b,, b2, co, c,, $,, 
depend on the material in question. Typical values for the material constants for 
copper are given in Section 6. 

Our algorithm requires knowledge of the derivatives pi, pP which can be 
explicitly calculated in each of the three cases (a), (b), (c). The most general 
equations of state may be presented in tabular form, but provided that data is 
available for p, pi and pp, we can always apply our algorithm as in cases (ak(c). 

In the next section we describe a standard test problem for the Euler equations 
with a general convex equation of state. 
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5. A TEST PROBLEM 

In this section we describe a standard test problem in gas dynamics. 
The test problem we consider is concerned with shock reflection in one dimen- 

sion of a gas governed by the Euler equations with a general equation of state. We 
consider a region 0 < x < 1 with initial conditions (at t = 0), 

P=PO 

u= -uo, (5.1) 
. . 

1=10, 

where p. = p(po, io) is given. This represents a gas of constant density and pressure 
moving towards x = 0 (see [S]). The boundary x = 0 is a rigid wall and the exact 
solution describes shock reflection from the wall. The gas is brought to rest at x = 0 
and, denoting initial values by (0), pre-shocked values by (- ), and post-shocked 
values by (+ ), we can postulate an exact solution of the form 

P’Pf, u=u+ =o, i= j+, tp=p+ =ptp+, i’)) for xJt<S 
(5.2a) 

p=p-, u=u- = -uo, i=i- =io, (P =P- =po=p(po, io)) for x/t > S, 
(5.2b) 

where the shock moves out from the origin with speed S, and S, p+, if, p+ = 
p(p +, it ) are given by the Rankine-Hugoniot shock relations. Thus 

&!!l= [P+Pu*l= [u(e+p)] 
[PI CPU1 Gel ’ 

(5.3) 

where [u] =u+ -u- denotes the jump in u across the shock. The solution of 
Eqs. (5.3) for S, p+, i+, p + subject to the initial conditions given by Eq. (5.1), and 
a precise form for the equation of state p =p(p, i), is given by Glaister [9]. 

In the next section we give the numerical results obtained for the test problem 
considered here. 

6. NUMERICAL RESULTS 

In this section we show the numerical results obtained for the test problem given 
in Section 5 using the Riemann solver described in Section 3. Each of Figs. 2-10 
refers to one of the equations of state given in Section 4 with different values of the 
parameters and initial conditions. 
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(a) Ideal equation of state. We take y = z with the initial data 

P(x,o)=Po=l 

u(x,O)= -ug= -1 

and choose i(x, 0) = i, such that the pressure jump across the shock, i.e., p +/p-, 
takes the values co, 10, or 2. 

(b) Stiffened equation of state. The parameters and initial data are taken to 
have the same values as for (a) and we choose B = 1.0. Three pressure ratios are 
obtained as for (a). 

(c) General equation of state for copper. We consider the general equation of 
state given by Eq. (4.3) with values for the parameters corresponding to copper, i.e., 

p. = 8.90, a, = 4.9578, a, = 3.6884, 

b, = 7.4727, b, = 11.519, 6, = 5.5251, 

co = 0.39493, c, = 0.52883, tie = 3.6000, 

together with the initial data 

p(x, 0) = p. = 8.9 

24(x,0)= -u()= -1. 

Again we choose i(x, 0) = i, such that the pressure ratio p’/p- takes the three 
values co, 10, or 2. 

In each case we take 100 mesh points in 0 d x < 1, and choose the output time so 
that the shock has moved a distance of 0.3. All computations have been done using 
a second order scheme with the “superbee limiter” (see [5]). We can see that the 
approximate solution gives a good representation of the exact solution, in par- 
ticular, the correct shock speed has been achieved. The results obtained using the 
first-order algorithm only are not distinguishable from those given here. 

Finally, we compare the c.p.u. time to compute the results obtained for the ideal 
gas case (a) using (i) Roe’s original Riemann solver, and (ii) our general Riemann 
solver applied to the ideal gas case. The comparison, using an Amdahl V7, is as 
follows: 

(i) Using “superbee” and 100 mesh points takes 0.0142 c.p.u. s to compute 
one time step, and a total of 1.6 c.p.u. s to reach a real time of 0.9 s using 112 time 
steps. 

(ii) Using “superbee” and 100 mesh points takes 0.0178 c.p.u. s to compute 
one time step, and a total of 2.0 c.p.u. s to reach a real time of 0.9 s using 112 time 
steps. 

This shows that our general Riemann solver is only slightly more expensive than 
Roe’s original, as was to be expected. If we substitute the form of the ideal equation 

581/74/2-IO 



408 P. GLAISTER 

of state into Eqs. (3.55a)-(3.56b), however, and incorporate the resulting 
expressions into the finite difference code, we find that the two Riemann solvers are 
comparable in execution time. 

7. CONCLUSIONS 

We have extended the one-dimensional version of Roe’s scheme to incorporate a 
general convex equation of state and have achieved satisfactory results for the 
shock reflection problem. In addition, we have seen that the algorithm is com- 
putationally efficient. This scheme can be extended to three dimensions incor- 
porating operator splitting. Details of this extension together with a two-dimen- 
sional calculation of the flow in a tunnel containing a step involving interacting 
waves are given by Glaister [lo]. 

There may be scope for improving the efficiency of our scheme using the ideas of 
Colella and Glaz [ 111 on efficient solution algorithms for the Riemann problem for 
real gases and the work of Harten [12] on the symmetrisation of systems of 
conservation laws which possess entropy functions. 
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